The Role of Glycolysis Inhibitors In Fighting Cancer
The best way of killing cancer cells is to starve them. This is the safest way of killing cancer cell as the normal healthy cells are not affected by this way of killing the cancerous cells. In the past it was a big problem finding a way of killing the cancerous cells without affecting the healthy body cells. This is because all the cancer cells as well as the healthy body cells depend on glucose as their energy source that they need to survive. However very many researchers have done work on the subject of cancer cell metabolism and the discovery by Otto Warburg that the cancer cells depended entirely on glucose for source of energy unlike the healthy body cells that can adapt to other sources of energy like fats helps a lot in selective killing of cancer cells without hurting the healthy body cells. The cancerous cells undergo increased glycolysis and rely on this pathway for generation of ATP energy as their sole source of energy for growth and survival.
Basing arguments on the Warburg effect, doctors have come up with different cancer therapies to help in killing the cancer cells effectively without hurting the healthy body cells. The cancer cell overdependence on the glycolitic pathway for generation of ATP energy as the sole source of survival has provided a great loophole through which the cancer cells can be selectively killed without affecting any other healthy cell by inhibiting glycolysis.
There are Glycolytic inhibitors that can be used in maiming the cancer cells by denying them their source of livelihood. By inhibiting glycolysis they exert an anticancer effect on the cancer cells hence help in killing the cancer cells.
Glycolytic inhibitors can be used mostly in fighting cancer cells that have mitochondrial defects or in hypoxic conditions. These cells often become resistant to conventional medication such as chemotherapy or radiation therapy. However increased glycolysis is a common characteristic of all tumor cells and glycolysis inhibition can be used in wide range in treating cancer patients.
Though it may be difficult to understand the molecular and biochemical mechanisms that lead to increased aerobic glycolysis in the cancer cells, the metabolic repercussions of this increased glycolysis is very clear. The malignant cells become dependent or other addicted to the glycolysis pathway as the sole source of ATP energy. Researchers opine that the increased glycolysis in cancer cells may be caused by such factors as; hypoxia, oncogenic signals as well as mitochondrial dysfunction.
The cancer cells have to access a reliable supply of glucose in order to live. Unlike oxidative phosphorylation which generates more ATP energy per glucose the ATP generation of ATP through glycolysis is too little. Typically oxidative phosphorylation produces 36 ATP per glucose while glycolysis produces 2 ATP per glucose. This therefore forces the cancer cells to eat more glucose for effective metabolism as well as to accomplish other activities. The cancer cells therefore need to maintain glycolitic activities in order to grow and live on.
This metabolic characteristic of the cancer cells has availed a better way of killing cancer cells. Researchers have now proved that by inhibiting glycolysis the cancer cell will stop production of the ATP energy that they depend on and so they will die out of starvation.
When there is glycolysis inhibition the normal body cells will be able to adapt to other metabolic pathways to generate the ATP energy through the TCA cycle and oxidative phosphorylation in the mitochondria. The cancer cells however cannot adapt to other sources of ATP as they have defects hence will die as they will not be able to live without another source of ATP energy. The healthy body cells will be able to adapt to new sources of energy like fatty acids and amino acids to produce metabolic intermediates channeled to the TCA cycle for ATP production through respiration. Glycolysis inhibition is therefore a clever way of killing the cancer cells without harm on the healthy body cells.
DCA as a Glycolysis inhibitor
The way DCA works as a glycolysis inhibitor is very interesting; it forces the cancer cells to generate ATP through glucose oxidation but the cancer cells are not able to do this and they get starved and die. The healthy body cells can adapt to metabolic changes unlike the cancerous cells. The first way through which the body cells get energy is through glucose oxidation which happens in the mitochondria of every cell in the body and requires oxygen. Glucose respiration is the mostly utilized form of metabolism in the healthy cells. However in absence of oxygen the cells turn to glycolysis which takes place in the cell cytoplasm for energy generation. Glycolysis does not avail adequate ATP energy for normal cells; however it is the best for cancer cells. Glycolysis depends on sugar. This gives the healthy cell advantage as they have a backup plan in case the oxygen supply is interrupted. However to oxidize glucose there must be pyruvate. Pyruvate entry into the mitochondria is inhibited by an enzyme known as pyruvate dehydrogenase kinase (PDK). In case the PDK is strong then it will limit the transportation of pyruvate into the mitochondria and the healthy cells will have to depend on glycolysis even in presence of oxygen but incase its weak the pyruvate will be transported with ease to mitochondria even when the oxygen is low.
Cancer cells have the most active PDK than the healthy cells and they are adapted to glycolysis. When PDK is weak then the cancer cells are disadvantaged and this is what the DCA does. It weakens PDK forcing the cancer cells to rely on glucose oxidation which does not favor them. Hence they will starve and die.
Dr. Dalal Akoury is an experienced integrative cancer doctor who has seen very many cancer patients journey to victory in their fight against cancer. She is available for consultations. Just call her now and begin your journey to victory against cancer.
The Role of Glycolysis Inhibitors In Fighting Cancer
Related articles




[…] Glycolysis Inhibitors Help in Fighting Cancer […]